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Abstract. We make a detailed investigation on the quantum corrections to Chern-Simons spinor elec-
trodynamics. Starting from Chern-Simons spinor quantum electrodynamics with the Maxwell term
−1/(4γ)

∫
d3xFµνF µν and by calculating the vacuum polarization tensor, electron self-energy and on-shell

vertex, we explicitly show that the Ward identity is satisfied and hence verify that the physical quantities
are independent of the procedure of taking γ→∞ at tree and one-loop levels. In particular, we find the
three-dimensional analogue of the Schwinger anomalous magnetic moment term of the electron produced
from the quantum corrections.

I Introduction

There is a relatively long history for (Abelian or Non-
Abelian) Chern-Simons (CS) theory and its relevant the-
ories to become popular in physics. At early stage they
appeared as the high-temperature limit of four dimen-
sional field models, where Maxwell-Chern-Simons theory
can be regarded as an effective theory of QCD and the
electroweak model [1]. Further its more striking aspect
had been found: in three-dimensional space-time the CS
term can provide a topological mass for the gauge field in
a gauge invariant way as an alternative to Higgs mecha-
nism [2,3]. In recent years the revival to the study of CS
theory, on one hand, is due to Witten’s work [4] in which a
connection between CS theory and 2-dimensional confor-
mal invariant field theory was found; on the other hand,
owing to the non-invariance of CS term under P and T
transformations and especially its topological character, it
can be used to describe the dynamics of anyon particles so
that it has been favoured by physicists to solve some prob-
lems in condensed matter theory such as the fractional
quantum Hall effect and the high temperature supercon-
ductivity [5]. It is also proved that CS term coupled to
scalar matter is useful in the field-theoretic formulation of
the Aharonov-Bohm effect [6] and the three-dimensional
analogue of Coleman-Weinberg mechanism is explored up
to two-loop [7].

In this paper we shall present a detailed investigation
on the one-loop quantum correction of one-loop CS spinor
electrodynamics. We start from the action with Maxwell
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term

S =
µ

2

∫
d3x εµνλAµ∂νAλ − 1

4γ

∫
d3xFµνF

µν (1)

+
∫
d3x

[
ψ̄(i∂̂ + eÂ−m)ψ

]
− 1

2α

∫
d3x(∂µA

µ)2,

where (and in what follows) Â≡γαAα, µ is the statisti-
cal parameter and we choose the Lorentz gauge condition
∂µA

µ = 0. The notation is the same as that in [3],

γµ = iσµ, γµγν = gµν − iεµνργ
ρ ,

gµν = diag(1,−1,−1). (2)

It should be stressed that the introduction of Maxwell
term plays a two-fold role: on one hand, it provides a
mathematically correct path-integral quantization of the
CS theory in Euclidean region, since the pure CS term
contains the non-positive definite first order differential
operator; on the other hand, as a higher order derivative
term, it provides a gauge invariant regularization. How-
ever, this regularization is not enough to make one-loop
amplitude finite, another regularization must be imple-
mented. Here we shall adopt dimensional regularization.

The model (1) has been studied by many authors [8],
especially the case where CS term is absent (i.e. pure
QED3). However they mainly consider the dynamical mass
generation, the chiral symmetry and parity breaking by
quantum corrections. A complete investigation on its
quantum correction still lacks such as the explicit verifica-
tion of Ward identity and whether there exists the three-
dimensional analogue of Schwinger’s anomalous magnetic
moment term, all of which depend on an explicit analytical
calculation of the vertex correction. To our knowledge, up
to now there appears no analytic result on this part. We
are further motivated by the result of pure non-Abelian
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CS theory, where a different order in taking γ→∞ can
result in a different finite renormalization of the statisti-
cal parameter [9]. It is desirable to see whether this case
happens in CS spinor electrodynamics too. As we know,
in quantum electrodynamics, the Ward identity means

Z1 = Z2, (3)

where Z2 and Z1 are the electron wave function renor-
malization constant and vertex renormalization constant
respectively. So if the Ward identity is satisfied, the renor-
malization of coupling constant is only relevant to the
gauge field wave function renormalization constant Z3:

eR =
√
Z3Z1Z

−1
2 e =

√
Z3e. (4)

Since Z3 is independent of the introduction of Maxwell
term, so the Ward identity means that the physical quan-
tities have nothing to do with the order of taking γ→∞.
In particular it is very interesting to see whether there
exists an anomalous magnetic moment term, since it can
produce a new interaction between anyons that will lead
to unusual planar dynamics [10,11]. This may be helpful
to understand the mechanisms of fractional quantum Hall
effects and high temperature superconductivity.

The Feynman rules are listed as follows
– gauge field propagator

D̃(0)
µν (p) = −i γ

p2 − µ2γ2

[
iµγεµνρ

pρ

p2 + gµν − pµpν

p2

]
,

(5)

where we choose Landau gauge (α = 0) to avoid in-
frared singularity [3,12]. In the limit of γ→∞, we have

D(0)
µν (p) = − 1

µ
εµνρ

pρ

p2 . (6)

– electron propagator

S(0)(p) = i
p̂+m

p2 −m2 . (7)

– the vertex

−ieγµ(2π)3δ(3)(p+ q + r). (8)

In Sect. II, starting from the classical action (1), we
calculate the vacuum polarization tensor and electron self-
energy correction and define the finite renormalization
constants relevant to them. In Sect. III, we compare our
results obtained in dimensional regularization with those
obtained in Pauli-Villars regularization and expressed in
spectral representation and find the results are identical,
this shows the gauge invariant regularization scheme in-
dependence. Section IV is devoted to a detail calculation
of mass-shell vertex correction. It is explicitly shown that
the Ward identity is satisfied on mass-shell. Especially, we
find the three dimensional analogue of anomalous mag-
netic moment term. In Sect. V we turn to pure CS spinor
electrodynamics (i.e. taking γ→∞ at tree level) and we
verify that the Ward identity is still satisfied, which shows
that the physical quantities are independent of the order
of taking large-γ limit. Section VI contains the conclusions
and some discussions on higher order results.

II One-loop vacuum polarization
and self-energy

A Polarization tensor

The polarization tensor gets contribution from the elec-
tron loop and its amplitude is

iΠµν(p)

= −e2
∫

dnq

(2π)n

Trγν [(q̂ + p̂) +m]γµ(q̂ +m)
[(q + p)2 −m2][q2 −m2]

= −2e2
∫

dnq

(2π)n
(9)

−imεµνρp
ρ + 2qµqν + qµpν + qνpµ + [m2 − q·(q + p)]gµν

(q2 −m2)[(q + p)2 −m2]
.

The standard calculation gives

Πµν(p)

= iεµνρp
ρΠo(p2) + (p2gµν − pµpν)Πe(p2)

=
e2

4π

{
iεµνρp

ρm

p
ln

1 + p/(2m)
1 − p/(2m)

−(p2gµν − pµpν)
[
−m

p2 +
(

1
4p

+
m2

p3

)

× ln
1 + p/(2m)
1 − p/(2m)

]}
. (10)

B Electron self-energy

The Feynman integral for electron self-energy is read as
follows

−iΣ̃(p,m, γ)

= −e2γ
∫

dnq

(2π)n

×γν [(q̂ + p̂) +m]γµ[iµγεµνρqρ + q2gµν − qµqν ]
[(q + p)2 −m2]q2(q2 − µ2γ2)

= −e2γ
∫

dnq

(2π)n

×−q̂[mµγ + q·(q + p)] + q2m+ µγq·(q + p)
[(q + p)2 −m2]q2(q2 − µ2γ2)

. (11)

Using the identities

1
q2(q2 − µ2γ2)

=
1

µ2γ2 (
1

q2 − µ2γ2 − 1
q2

),

2q·p=[(q + p)2 −m2] − q2 − (p2 −m2)
=[(q + p)2 −m2] − (q2 − µ2γ2)

−(p2 −m2 + µ2γ2), (12)

Equation (11) can be written as

−iΣ̃(p,m, γ)
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= −2e2γ
∫

dnq

(2π)n

{(
m+

µγ

2
− p2 −m2

2µγ

)

× 1
(q2 − µ2γ2)[(q + p)2 −m2]

+
1

2µγ
1

q2 − µ2γ2

+
p2 −m2

2µγ
1

q2[(q + p)2 −m2]

−
(
m

µγ
+

1
2

− p2 −m2

2µ2γ2

)

× q̂

(q2 − µ2γ2)[(q + p)2 −m2]

−
(
p2 −m2

2µ2γ2 − m

µγ

)
q̂

q2[(q + p)2 −m2]

}
. (13)

After the integration and the limit of γ→∞, we have

Σ(p)

= lim
γ→∞ Σ̃(p,m, γ)

=
e2

4π

{
2γ +

m

µ
+
p2 −m2

µp
ln

1 + p/m

1 − p/m

− p̂

µ

[
m2

p2 +
m

p
(1 − m2

p2 ) ln
1 + p/m

1 − p/m
− 2

3

]}
. (14)

C Finite renormalization

Now we discuss the finite renormalization of one-loop two
point functions. From (6), (10) and the following relation

D(1) −1
µν (p) = D(0) −1

µν (p) − iΠµν(p), (15)

we can get the one-loop gauge field propagator

D(1)
µν (p)=−i(gµν − pµpν

p2 )
Πe(p2)

µ2[1 −Πo(p2)]2 − p2Π2
e (p2)

−εµνρ
pρ

p2

µ[1 −Πo(p2)]
µ2[1 −Πo(p2)]2 − p2Π2

e (p2)
.

≈−i
(
gµν − pµpν

p2

)
Πe(p2)
µ2

−εµνρ
pρ

p2µ

(
1 +Πo(p2)

)
. (16)

The renormalized propagator should have the following
form

D(1)
µν (p)≡−i(gµν − pµpν

p2 )Π1(p2)

−εµνρ
pρ

p2

[
Z3

µph
+Π2(p2)

]
. (17)

Choosing the renormalization point p2 = 0, we get the
finite renormalization of the statistical parameter µ

µph = µ(1 +
e2

4π
), (18)

and the one-loop gauge field propgator (up to the order
e2)

D(1)
µν (p)=−i

(
gµν − pµpν

p2

)
Πe(p2)
µ2

ph

+
εµνρp

ρ

p2µph

(
1 +

[
Πo(p2) −Πo(0)

])
, (19)

From (17) and (19), one can see

Π1(p2)≡Πe(p2)
µ2

ph

=
1
µ2

ph

[
m

p2 −
(

1
4p

+
m2

p3

)
ln

1 + p/(2m)
1 − p/(2m)

]
,

Π2(p2)≡Πo(p2) −Πo(0)

=
e2

4π

(
1 − m

p
ln

1 + p/(2m)
1 − p/(2m)

)
. (20)

They can be expressed in terms of the spectral represen-
tation [13]:

Π1(p2)=
e2

8πµ2
ph

∫ ∞

2m

da(1 + 4m2/a2)
a2 − p2 − iε

,

Π2(p2)=
e2mp2

2πµph

∫ ∞

2m

da

a2(p2 − a2 + iε)
. (21)

Correspondingly, we can find from (17) and (19),

Z3 = 1. (22)

We observe that the terms ∼ Πe(p2) appear in (19); this
means the quantum correction generates the parity-even
part of the gauge field propagator.

As for the finite renormalization of electron self-energy,
it is defined by the usual mass-shell renormalization con-
dition

ΣR(p)|p̂=mph = 0,
∂

∂p̂
ΣR(p)|p̂=mph = 0. (23)

Thus the self-energy can be written as the expansion
around p̂ = mph,

Σ(p) = δm− (Z−1
2 − 1)(p̂−mph) + Z−1

2 ΣR(p) (24)

and the one-loop electron propagator is

S(1)(p)=i
Z2

p̂−mph −ΣR(p)

=i
[

Z2

p̂−mph
+ Σ̃R(p)

]
. (25)

From the one-loop correction (14), the physical mass, elec-
tron wave function renormalization constant and the ra-
diative correction are (up to the order e2) given by

mph=m− δm = m− e2

2π
(γ +

m

3µ
),
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Z2=1 +
e2

4π
5
3µ
,

ΣR(p)=
e2

4π

{
2mph

µ
+
p2 −m2

ph

µp
ln

1 + p/mph

1 − p/mph

− p̂

µ

[
1 +

m2
ph

p2 +
mph

p
(1 − m2

ph

p2 )

× ln
1 + p/mph

1 − p/mph

]}
,

Σ̃R(p)=
e2

4πµ
p̂

p2

(
1 − p̂+mph

2p
ln

1 + p/mph

1 − p/mph

)
. (26)

III Comparison with the results
in spectral representation

In [3], the one-loop two point functions of CS spinor elec-
trodynamics had been presented in terms of the spectral
representation. Regarding the Maxwell term as a higher
covariant derivative term, we can consider the results in
[3] obtained by Pauli-Villars regularization. If the large
topological mass limit is taken, their results should be
consistent with ours since both regularization schemes are
gauge invariant. The aim of this section is to show it ex-
plicitly.

A Polarization tensor

We start from (2.61)–(2.64b) of [3]. After the renormal-
ization, the gauge field propagator is represented in the
following spectral form (under the substitutions γµ≡µ̃,
e2γ≡ẽ2):
D̃(1)

µν (p)

= −i
(
gµν − pµpν

p2

)
γ

[
Z̃3

p2 − µ̃2
ph + iε

+ Π̃(1)(p2)

]

+γµ̃phεµνα
pα

p2

[
Z̃3

p2 − µ̃2
ph + iε

+ Π̃(2)(p2)

]
. (27)

The physical mass µ̃ph is given by

µ̃ph = µ̃− ẽ2µ̃

8π

∫ ∞

2m

1 + (4m/a2)(m− µ̃)
a2 − µ̃2 da+O(ẽ4). (28)

The charge renormalization constant Z̃3 is equal to

Z̃3=1 − ẽ2

8π

×
∫ ∞

2m

da
(1/a2)(a2 − 2mµ̃)2 + (2m− µ̃)2

(a2 − µ̃2)2

+O(ẽ4) . (29)

The continuum contributions are

Π̃(1)(p2)

=
ẽ2

8π

∫ ∞

2m

da

× (1/a2)(a2 − 2mµ̃)2 + (2m− µ̃)2

(p2 − a2 + iε)(a2 − µ̃2)2
+O(ẽ4), (30a)

Π̃(2)(p2)

=
ẽ2

4π

(
1 − 2m

µ̃

)∫ ∞

2m

da

× a2 − 2mµ̃
(p2 − a2 + iε)(a2 − µ̃2)2

+O(ẽ4). (30b)

The calculation gives:

Z3≡ lim
γ→∞ Z̃3 = 1,

µ̃ph≡γµph = γµ

(
1 +

e2

4π

)
, (31)

Π(1)(p2)≡ lim
γ→∞ γΠ̃(1)(p2)

=
e2

8πµ2
ph

∫ ∞

2m

da(1 + 4m2/a2)
a2 − p2 − iε

,

Π(2)(p2)≡ lim
γ→∞

[
−γ2µ2Π̃(2)(p2)

]

=
e2m

2πµph

∫ ∞

2m

da

p2 − a2 + iε
. (32)

Thus

D(1)
µν (p)≡ lim

γ→∞ D̃(1)
µν (p)

=− 1
µph

εµνα
pα

p2

[
1 +Π(2)(p2)

]
−i(gµν − pµpν

p2 )Π(1)(p2)

=−i(gµν − pµpν

p2 )Π(1)(p2)

− 1
µph

εµνα
pα

p2

[
1 +Π(2)(p2) −Π(2)(0)

]
. (33)

It is easy to see that the result (32) and (33) forD(1)
µν in the

case Pauli-Villars regularization and after taking the limit
γ → ∞ (modulo a finite renormalization of statistical pa-
rameteri µ) coincides with (19), (20) and (21). The crucial
feature of (33) is the appearance of the parity-even term
∼ (gµν − pµpν/p

2) in the one-loop approximation. This
term has no pole in the complex plane of p2.

B Electron self-energy

After the substitution γe2 ≡ ẽ2, the spectral form of the
fermion propagator will read (see (2.70)–(2.71) of [3]):

S̃(1)(p) = i

[
Z̃2

p̂− m̃ph
+ Σ̃(p)

]
. (34)
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The physical mass, m̃ph, is

m̃ph=m+
ẽ2

16π

×
∫ ∞

−∞
da

[
(µ̃+ 2m)(µ̃+ 2a)

a2(a−m)
θ(a2 −M2)

+
(a+m+ 2µ̃)(a2 −m2)

µ̃2a2

×θ(M2 − a2)θ(a2 −m2)
]
+O(ẽ4). (35)

The fermionic renormalization constant, Z̃2, is given by

Z̃2=1 − ẽ2

16π

×
∫ ∞

−∞
da

[
(µ̃+ 2m)(µ̃+ 2a)

a2(a−m)2
θ(a2 −M2)

+
(a+m+ 2µ̃)(a+m)

µ̃2a2

×θ(M2 − a2)θ(a2 −m2)
]
+O(ẽ4) , (36)

where M = µ̃+m. The continuum contribution in (34) is

Σ̃(p)=
ẽ2

16π

∫ ∞

−∞

da

p̂− a

×
[
(µ̃+ 2m)(µ̃+ 2a)

a2(a−m)2
θ(a2 −M2)

+
(a+m+ 2µ̃)(a+m)

µ̃2a2

×θ(M2 − a2)θ(a2 −m2)
]

+O(ẽ4). (37)

Considering the limit γ → ∞ in (34)–(37), we get

mph≡ lim
γ→∞ m̃ph = m− e2

2π

(
γ +

m

3µ

)
,

Z2≡ lim
γ→∞ Z̃2 = 1 +

e2

4π
5
3µ
,

Σ̃R(p)≡ lim
γ→∞ Σ̃(p)

=
e2

4πµ
p̂

p2

(
1 − p̂+mph

2p
ln

1 + p/mph

1 − p/mph

)
. (38)

One notices that Σ̃(p) in (37) can be written as

Σ̃(p) = Σ̃1(p) + Σ̃2(p), (39)

where

Σ̃1(p)=
ẽ2

16π

∫ ∞

−∞

da

p̂− a

[(
µ̃2

a2 +
4m
a

)
θ(a2 −M2)
(m− a)2

+
1

µ̃2a2 (a+m)2θ(M2 − a2)θ(a2 −m2)
]
,

Σ̃2(p)=
ẽ2

8π

∫ ∞

−∞

da

p̂− a

[
(a+m)
(a−m)2

µ̃

a2 θ(a
2 − M̂2)

+
(a+m)
µ̃a2 θ(M2 − a2)θ(a2 −m2)

]
, (40)

where Σ̃1(p) arises from the exchange of a conventional
transverse vector part of the photon, while Σ̃2(p) comes
from the axial part of D̃(0)

µν in the (5).
It is easily shown that

lim
γ→∞ Σ̃1(p) = 0, (41)

and thus

lim
γ→∞ Σ̃(p) = lim

γ→∞ Σ̃2(p) = Σ̃R(p). (42)

Therefore, in the limit of the pure CS spinor electrody-
namics with Pauli-Villars regularization we get the fol-
lowing result

S(1)(p)≡ lim
γ→∞ S̃(1)(p) =

iZ2

p̂−mph
+ iΣ̃R(p). (43)

Comparing the corresponding results with those in
Sect. II, we can see that they are the same.

IV On-shell vertex correction

The one-loop on-shell vertex correction is given by

−iū(p′)Γ̃µ(p′, p,m)u(p)

= ū(p′)
{
−γe2

∫
d3q

(2π)3
γσ[p̂′ + q̂ +m]γµ[p̂+ q̂ +m]γλ

[(p′ + q)2 −m2][(p+ q)2 −m2]

×
[
q2gλσ − qλqσ
q2(q2 − µ2γ2)

+
iµγελσρq

ρ

q2(q2 − µ2γ2)

]}
u(p)

≡J̃a
µ + J̃b

µ + J̃c
µ, (44)

where

J̃a
µ=−e2γ

∫
d3q

(2π)3

× [−q̂γλ + 2(p′ + q)λ]γµ[−γλq̂ + 2(p+ q)λ]
(q2 − µ2γ2) [(p′ + q)2 −m2] [(p+ q)2 −m2]

, (45)

J̃b
µ=e2γ

∫
d3q

(2π)3

× [−q2 + 2(p′ + q)·q]γµ[−q2 + 2(p+ q)·q]
q2(q2 − µ2γ2) [(p′ + q)2 −m2]) [(p+ q)2 −m2]

, (46)

J̃c
µ=−e2γ

∫
d3q

(2π)3

× iµγελσρq
ρ[−q̂γσ + 2(p′ + q)σ]γµ[−γλq̂ + 2(p+ q)λ]

q2(q2 − µ2γ2) [(p′ + q)2 −m2] [(p+ q)2 −m2]
.

(47)

For derivation of (45)–(47), we have used the on-shell con-
dition p̂ = p̂′ = m. and

ū(p′)γσ [p̂′ + q̂ +m]=ū(p′) [(−p̂′ − q̂ +m)γσ + 2(p′ + q)σ]

=ū(p′)[−q̂γσ + 2(p′ + q)σ],

[p̂+ q̂ +m]γµu(p)=[−γλq̂ + 2(p+ q)λ]u(p).
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The term J̃b
µ is very simple,

J̃b
µ = γe2γµ

∫
d3q

(2π)3
1

(q2 − µ2γ2)q2
=

ie2

4πµ
γµ≡Jb

µ. (48)

The term J̃a
µ can be transformed into the following form

J̃a
µ = −γe2

∫
d3q

(2π)3
(49)

×
[
q2γµ − 2q̂qµ + 4(p·p′ + p·q + p′·q)γµ + 4qµm− 4q̂Pµ

]
(q2 − µ2γ2) [(p′ + q)2 −m2] [(p+ q)2 −m2]

,

where Pµ ≡ (p′ + p)µ. One can not take the limit γ→∞
directly except the term 4p′·p, which vanishes after the
large-γ limit. However, using the following decomposition

1
[(k + p)2 −m2]

=
1

k2 −m2 − 2k·p+ p2

(k2 −m2)[(k + p)2 −m2]
,

(50)

one can see that all the terms in (49) ∼ q in the numerator
vanish when γ → ∞. The first two terms in (49) can be
transformed into

J̃a
µ=−γe2

∫
d3q

(2π)3

{
q2γµ − 2q̂qµ

(q2 − µ2γ2)(q2 −m2)2

×
[
1 +

(2p′·q +m2)(2p·q +m2)
(2p′·q + q2)(2p·q + q2)

− 2p′·q +m2

2p·q + q2
− 2p′·q +m2

2p′·q + q2

]}
. (51)

Only the first term in (51) does not vanish after taking
the limit γ → ∞. Thus,

Ja
µ≡ lim

γ→∞ J̃a
µ = lim

γ→∞ γe2
∫

d3q

(2π)3
2q̂qµ − q2γµ

(q2 − µ2γ2)(q2 −m2)2

=− lim
γ→∞

γe2

3
γµ

∫
d3q

(2π)3
q2

(q2 − µ2γ2)(q2 −m2)2

=− lim
γ→∞

γe2

3
γµ

2(µγ)3 − 3(µγ)2m+m3

8π(m2 − µ2γ2)2
= − ie2

4πµ
1
3
γµ.

(52)

As for the third term J̃c
µ, taking into account that in (47)

ελσρq
ρq̂γσγµγ

λq̂ = −2iqµq2,

and after some algebraic manipulation, we have1

J̃c
µ = 2e2µγ2

∫
d3q

(2π)3

× [−qµq2+(q·p′)γµq̂+(q·p)q̂γµ+2mγµq2−2q2Pµ]

q2(q2−µ̃2)[(p′+q)2−m2][(p+q)2−m2]

1 In the numerator of (53) we skip the term ∼ ελσρqρp′σpλ

coming from (47), since after integration it will become of the
form ελσρpρpλp′σ and ελσρp′ρpλp′σ, both giving zero

= 2e2µγ2
∫

d3q

(2π)3

×−2qµq2+(2mγµ−2Pµ)q2+[q̂γµ(2p·q+q2)/2+γµq̂(2p′·q+q2)/2]
q2(q2−µ2γ2)[(p′+q)2−m2][(p+q)2−m2]

= 2e2µγ2
∫

d3q

(2π)3

{
2mγµ−2qµ−2Pµ

(q2−µ2γ2)(2p′q+q2)(2pq+q2)

+
γµq̂

2q2(q2 − µ2γ2)[(p+ q)2 −m2]

+
q̂γµ

2q2(q2−µ2γ2)[(p′+q)2−m2]

}
. (53)

Similar to (49), for the terms ∼q in (53) one cannot take
the large-γ limit directly, we still need first to employ
the manipulation (50). Considering the symmetry of in-
tegrand, we get

Jc
µ≡ lim

γ→∞ J̃c
µ

=−e2

µ

∫
d3q

(2π)3

[
4(mγµ − Pµ − kµ)

(2p·q + q2)(2p′·q + q2)

+
γµq̂

q2(2p·q + q2)
+

γµq̂

q2(2p′·q + q2)

]
. (54)

The standard Feynman integration gives that

Jc
µ=−2

e2

µ

∫
d3q

(2π)3

∫ 1

0
dx

{
(2mγµ − 2Pµ) − 2(qµ − xPµ)

[q2 −m2 + x(1 − x)K2]2

+
γµ(q̂ − xp̂)

(q2 −m2x2)2

}

=−2e2i
µ8π

∫ 1

0
dx

{
2mγµ − 2(1 − x)Pµ

[m2 − x(1 − x)K2]1/2 − γµ

}

=
ie2

4πµ

[
γµ − 2mγµ − Pµ

K
ln

1 +K/(2m)
1 −K/(2m)

]

=
ie2

4πµ

[
γµ − iεµνλK

νγλ

K
ln

1 +K/(2m)
1 −K/(2m)

]
, (55)

where Kµ≡p′
µ −pµ, K≡

√
K2 and we have used the three-

dimensional analogue of the Gordon identity:

γµ =
1

2m
[Pµ + iεµνλK

νγλ
]
. (56)

Thus at γ → ∞, from the (48), (52) and (55) we get

lim
γ→∞

(
−iΓ̃µ(K)

)
≡ − iΓµ(K) = Ja

µ + Jb
µ + Jc

µ,

Γµ(K)

= − e2

4πµ

[
5
3
γµ − iεµνλK

νγλ

K
ln

1 +K/(2m)
1 −K/(2m)

]
= γµF1(K2) + iεµνλK

νγλF2(K2). (57)

The vertex renormalization is defined as

Γµ(K) = γµ(Z−1
1 − 1) + Z−1

1 ΓR
µ (K) (58)
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and the renormalization condition is as usual

ΓR
µ (K)|p̂=p̂′=m, Kα=p′

α−pα=0 = 0. (59)

Then we get the vertex renormalization constant

Z−1
1 γµ=γµ + γµF1(0),

Z1
−1=1 − e2

4πµ
5
3
, (60)

and the one-loop radiative correction to the vertex as

ΓR
µ (K)=−γµ + Z1(γµ + Γµ)

=
ie2

4πµ
εµνλK

νγλ 1
K

ln
1 +K/(2m)
1 −K/(2m)

. (61)

From (26) we have

Z1 = 1 +
e2

4πµ
5
3

= Z2, (62)

which is just the consequence of Ward identity

KµΓµ(K) = Σ(p′) −Σ(p). (63)

It is remarkable that ΓR
µ (K2 = 0) does not vanish, i.e.

ΓR
µ (0) =

ie2

4π
1
µm

εµνλK
νγλ = i

α

µm
εµνλK

νγλ, (64)

which gives the three-dimensional analogue of Schwinger’s
result for the anomalous magnetic moment of the electron.
In a slowly varying (in both space and time) external elec-
tricmagnetic field, it will lead to a new interaction Hamil-
tonian2:

∆H=− α

mµ
εµνλψ̄(x)γλψ(x)∂νAµ

=− α

2mµ
εµνλψ̄(x)γλψ(x)Fµν

=− α

2mµ
ψ̄(x)σµνψ(x)Fµν , (65)

where we have used that

εµνλγ
λ =

i

2
[γµ, γν ]≡σµν . (66)

Thus this term leads to the anomalous magnetic moment
of the electron [14], which is consistent with the result in
[11]. It is very interesting that this term exists in scalar
case too [15].

V Pure Chern-Simons electrodynamics

Now we consider the case of pure CS electrodynamics,
i.e. put γ→∞ at the tree level. The vacuum polarization
tensor and D

(1)
µν (p) will be the same since this does not

2 The self-energy insertion in the external line can be disre-
garded since the electrons are on mass-shell

change the electron loop. However, the electron self-energy
and the vertex correction will be different since the gauge
field propagator is replaced by (6).

We first consider the electron self-energy

−iΣpure(p)=
ie2

µ

∫
dnq

(2π)n

γν(q̂ + p̂+m)γµε
µνρqρ

q2[(q + p)2 −m2]

=−2e2

µ

∫
dnq

(2π)n

q2 + (p̂−m)q̂
q2[(q + p)2 −m2]

=
ie2

4πµ

{
2m− (p̂−m)

p̂

m

[
m2

p2 +
m3

2p3

×
(

1 − p2

m2

)
ln

1 − p/m

1 + p/m

]}
. (67)

Similar discussions as the ones used in getting (26) give
that

mpure
ph =m(1 +

e2

2π
1
µ

),

Zpure
2 =1 +

e2

4π
1
µ
,

Σpure
R (p)=− e2

4πµ
(p̂−mph)

{
p̂

mph

[
m2

ph

p2 +
m3

ph

2p3

×
(

1 − p2

m2
ph

)
ln

1 − p/mph

1 + p/mph

]
− 1

}
,

Σ̃pure
R (p)=

e2

4π
1
µ

p̂

p2

[
1 +

p̂+mph

2p3 ln
1 − p/mph

1 − p/mph

]
. (68)

Using the techniques stated above, the on-shell vertex
correction is given as follows

−iū(p′)Γ pure
µ (p′, p,m)u(p)≡ − iΓ pure

µ (K)

=
ie2

µ

∫
dnq

(2π)n

γρ(q̂ + p̂′ +m)γµ(q̂ + p̂+m)γνε
νρλqλ

q2[(q + p′)2 −m2][(q + p)2 −m2]

=−2e2

µ

∫
dnq

(2π)n

q·p′γµq̂ + q·pq̂γµ + 2q2[mγµ − 2Pµ − qµ]
q2[(q + p)2 −m2][(q + p′)2 −m2]

=−2e2

µ

∫
dnq

(2π)n

[
γµq̂

2q2(q2 + 2p·q) +
q̂γµ

2q2(q2 + 2p′·q)
+

2mγµ − 2Pµ − 2qµ
(q2 + 2p′·q)(q2 + 2p·q)

]

=
ie2

4πµ

[
γµ − (2mγµ − Pµ)

1
K

ln
1 +K/(2m)
1 −K/(2m)

]

=
ie2

4πµ

[
γµ − iεµνλK

νγλ 1
K

ln
1 +K/(2m)
1 −K/(2m)

]
, (69)

where the three-dimensional Gordon identity (56) has
been used. Correspondingly, the vertex renormalization
constant is

Zpure
1 = 1 +

e2

4π
γµ, (70)

and we still have

Zpure
1 = Zpure

2 . (71)



552 M. Chaichian et al.: On quantum corrections to Chern-Simons spinor electrodynamics

In particular, we still obtain the same anomalous magnetic
moment term.

VI Conclusion and discussion

We have made a detailed study of the quantum correc-
tion to CS spinor electrodynamics. We give complete an-
alytical results for one-loop quantum corrections such as
polarization tensor, electron self-energy and specially for
the on-shell vertex. We find the three dimensional ana-
logue of the Schwinger anomalous magnetic term, despite
it is in the second order, this may lead to nontrivial pla-
nar dynamics since it can provide new interaction between
charged particles. We compare the different procedure of
taking the limit γ→∞ and verify explicitly that in both
cases the Ward identity is satisfied, and hence that the
physical quantities are independent of the order of taking
large-γ limit.

In addition, in both cases, the results are finite and the
β-function vanishes identically. If we take into account the
higher order perturbative corrections, according to BPHZ
renormalization procedure, we believe that the results are
still finite since the one-loop renormalization constants are
all finite and all propagators and vertex part in the asymp-
totic region will be the same as those in the free case after
renormalization.
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